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A method for systematically deriving simple nonlinear dynamical models from ice-core data is proposed. It
offers a tool to integrate models and theories with paleoclimatic data. The method is based on the unscented
Kalman filter, a nonlinear extension of the conventional Kalman filter. Here, we adopt the abstract conceptual
model of stochastically driven motion in a potential that allows for two distinctly different states. The param-
eters of the model—the shape of the potential and the noise level—are estimated from a North Greenland
ice-core record. For the glacial period from 70 to 20 ky before present, a potential is derived that is asymmetric
and almost degenerate. There is a deep well corresponding to a cold stadial state and a very shallow well
corresponding to a warm interstadial state.
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I. INTRODUCTION

The subject of past and future abrupt climate changes has
been extensively discussed in recent years �e.g., �1��. In par-
ticular, one seeks to understand the abrupt climate transitions
between cold stadials and warm interstadials during the last
glacial period, the so-called Dansgaard-Oeschger �DO�
events �2�. Their origin is still controversial; it is not at all
obvious which part of the earth’s climate system is respon-
sible for abrupt changes. Some attribute them to a temporary
collapse and resumption of the Atlantic meridional overturn-
ing cell �3�. Other hypotheses refer to internal oscillations of
the atmosphere-ocean-cryosphere system �4–7� or external
forcing mechanisms �8,9�.

Besides the work with relatively complex numerical mod-
els, it was tried to reduce the system to low-order, box, and
conceptual models. Often, a bistable nonlinear system has
been assumed in which shifts between the two distinctly dif-
ferent states are triggered randomly by stochastic forcing
�10,11�. Stochastic resonance �3,12–14� may or may not play
a role in such a model.

Here, we follow a complementary approach in deriving a
dynamical model purely from the data. The method is based
on unscented Kalman filtering, a nonlinear extension of con-
ventional Kalman filtering. This technique allows to consis-
tently estimate parameters in deterministic and stochastic
nonlinear models. Such methodology has been applied suc-
cessfully in engineering and robotics �15,16� as well as the
nonlinear dynamics community �17,18� but has not yet been
adopted in paleoclimatology. In the present study, we apply
this method to determine parameters within the model setting
of nonlinear stochastically driven motion in a potential. This
model is quite abstract and does not refer to a particular
physical mechanism. We focus on the methodology that
could also be used for parameter estimation in more physi-
cally motivated low-order models.

II. ICE-CORE DATA

The present study is based on the record of �18O as a
proxy for northern hemisphere temperatures from the North
Greenland Ice Core Project �NGRIP� ice core covering the
last 120 ky �1 ky=1000 y� �19�. When looking at the whole
record extending from the present to the last interglacial pe-
riod, the data are heavily nonstationary with switches be-
tween interglacial, glacial, and present-day climate. In order
to focus on the DO oscillations, we restrict our analysis to
the last glacial period. We actually use the record for the time
period from 70 to 20 ky before present �Fig. 1�. It appears
reasonable to assume that the data are stationary for that time
span. The mean for that period is −42.13 permille; it is re-
moved from the data set prior to the analysis as the dynami-
cal model is formulated as an anomaly model. The sampling
interval of the data is �t=0.05 ky resulting in 1001 data
points used for the analysis.

The ice-core data are subject to some uncertainties. The
instrumental measurement error is very small compared to
the variance of the data �19�. However, the interpretation of
the �18O values as temperatures is not one to one; other
climatological aspects such as precipitation may also be re-
flected in the isotope record. Moreover, there might be inac-
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FIG. 1. �18O record from the NGRIP ice core during the last
glacial period.

PHYSICAL REVIEW E 80, 066104 �2009�

1539-3755/2009/80�6�/066104�9� ©2009 The American Physical Society066104-1

http://dx.doi.org/10.1103/PhysRevE.80.066104


curacies in the age model due to uneven layers as deeper ice
is more compressed.

III. NONLINEARITY IN THE ICE-CORE DATA

In order to assess the level of nonlinearity and make a
case for nonlinear modeling of the ice-core data, we first
perform a test for nonlinearity using the method of surrogate
time series. We actually employ a refined procedure �20�
which tests against the null hypothesis of a nonlinearly res-
caled Gaussian linear stochastic process rather than just a
Gaussian linear stochastic process. The generated surrogate
time series have both the same power spectrum and the same
probability distribution as the original data. This technique
yields a stronger test for genuine nonlinear structure �and not
just non-Gaussianity� than earlier methods which suffer from
higher rates of spurious detection of nonlinearity. As test
statistic for measuring nonlinearity, we use the mean abso-
lute one-step prediction error of a locally constant �analog�
predictor. The predictor is built in time-delay space of di-
mension 3, comprising the current observation and the pre-
vious two observations; it is based on 50 nearest neighbors
with respect to the Euclidian norm. Figure 2�a� shows the
distribution of mean absolute prediction error estimated from
10 000 surrogate time series together with the prediction er-
ror in the ice-core data. There is very strong evidence for
nonlinearity in the ice-core record. The prediction error in
the ice-core data is smaller than in any of the surrogates; the

null hypothesis can be rejected at any significance level re-
solved with 10 000 realizations. However, the reduction in
prediction error compared to the surrogates is relatively
moderate �about 8% on the mean of the surrogate distribu-
tion�. Thus, nonlinear structure and determinism are weak.
The ice-core record has a strongly stochastic character; we
expect a high dynamical noise level when modeling it.

The surrogate data test for nonlinearity is most reliable for
stationary time series; the effect of nonstationarities on the
properties of the test is hard to quantify. In order to reduce
the mild nonstationarity present in the ice-core data, we ap-
ply the same nonlinearity test detailed above also to the one-
step increment time series rather than the ice-core record
itself. The results are given in Fig. 2�b�. Again, nonlinearity
can be detected at any significance level resolved with
10 000 surrogate time series. The nonlinearity in the incre-
ment time series is weaker than in the original record as one
expects as the noise level in the increment time series is
higher than in the time series itself.

IV. DYNAMICAL MODEL

It has been argued that abrupt paleoclimatic changes
might be related to a shift between two distinctly different
states in a stochastically driven nonlinear system �e.g.,
�3,14��. Similar arguments have been made with regard to
possible climate changes in the future. In the present study,
we adopt the simple conceptual model of stochastically
driven motion in a one-dimensional potential landscape. The
dynamics are governed by the stochastic differential equation

ż = −
dU

dz
+ �� . �1�

The variable z refers to a mean northern hemisphere tem-
perature and is here identified with the isotope record. The
deterministic drift is given by a potential that is assumed to
be of the form

U�z� = a4z4 + a3z3 + a2z2 + a1z , �2�

with free parameters �ai�i=1
4 that are to be determined. This

ansatz for the potential may be regarded as the simplest
model that possibly allows for two distinct stable states sepa-
rated by a potential barrier. The parameters are readily inter-
pretable: a4 determines the width of the potential, a2 influ-
ences the height of the potential barrier �if any�, whereas a3
and a1 control the degree of asymmetry in the location and
depth of the two potential wells. � denotes a Gaussian white
noise with zero mean and unit variance and � is the standard
deviation of the stochastic forcing.

V. MODEL ESTIMATION FROM DATA

A. Unscented Kalman filter

The unscented Kalman filter �UKF� is a nonlinear exten-
sion of the conventional Kalman filter �15�. It offers a flex-
ible and powerful tool for recursive estimation of unobserved
states and parameters in nonlinear systems from incomplete,
indirect, and noisy observations. Unlike the widely used ex-
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FIG. 2. �a� Distribution of mean absolute prediction error as
estimated from 10 000 surrogate time series. Dashed vertical line
gives the mean value of the distribution; the two dotted vertical
lines indicate one standard deviation. Solid vertical line gives the
prediction error in the ice-core time series. See text for explanation.
�b� As �a�, but for the one-step increment time series.
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tended Kalman filter, the UKF keeps the full system dynam-
ics rather than linearizing it, leading to a superior treatment
of nonlinearities. The UKF truncates the filter probability
density to a Gaussian in each iteration by only propagating
first and second moments but neglecting higher-order mo-
ments. The method is applicable to deterministic as well as
stochastic models �17�. Here, the UKF is only briefly de-
scribed in the form it is actually used in the present context.
Readers interested in theoretical and technical issues of the
method in more detail are referred to the literature �15–18�.

The UKF deals with estimation in nonlinear state space
models. A state space model consists of two parts: a dynami-
cal �or state� equation and an observation �or measurement�
equation. The dynamical equation is

zt = f�zt−1,�� + �t, �3�

where z is a state vector of dimension ns, f is a nonlinear
function, � is a vector of parameters of dimension np, and �
is a Gaussian white noise with zero mean and covariance
matrix Q. The observation equation is

yt = g�zt� + �t, �4�

where y is a vector of observations of dimension no, g is a
�generally� nonlinear observation function, and � is a Gauss-
ian white observational noise with zero mean and covariance
matrix R. The UKF addresses the problem of simultaneously
estimating the unobserved states �zt�t=0

N and the parameters �
given only time series of the noisy observations �yt�t=0

N . For
this purpose, an augmented state vector x of dimension n
=ns+np is formed by merging the state vector z and the
parameters �; its dynamical evolution is described by an
augmented function fa given by Eq. �3� augmented by a con-
stant dynamics for the parameters

xt = � zt

�t
� = �f�zt−1,�t−1�

�t−1
� + � �t

0np

� = fa�xt−1� + � �t

0np

� .

�5�

The dynamical noise has augmented covariance matrix

Qa = � Q 0nsnp

0npns
0npnp

� . �6�

For the model considered here, the state is only one dimen-
sional �ns=1�, the parameters are �= �a1 ,a2 ,a3 ,a4�T �np=4�
and the dynamical equation is given by a discretization of
Eq. �1� using the Euler scheme with step size h,

zt = f�zt−1,a1,a2,a3,a4�

= zt−1 − h�4a4zt−1
3 + 3a3zt−1

2 + 2a2zt−1 + a1� + �t. �7�

The variance of the dynamical noise �t in the discretized
system is Q=h�2. The dimension of augmented state space
is n=5. We have a single observational time series �no=1�
that is simply related to the state by the identity observation
function

yt = zt + �t. �8�

The UKF then takes a particularly simple form.
Let x̂t−1	t−1 be the estimate of the augmented state vector

and Pt−1	t−1
xx its covariance matrix at time t−1 having pro-

cessed all data up to time t−1. The filter density is repre-
sented by a small number of test points, so-called sigma
points, that are propagated through the nonlinear dynamical
equation. The sigma points have to be chosen carefully in
order to ensure that they capture the first and second mo-
ments of the transformed density to some order of accuracy
�16�. We employ 2n sigma points, �xt−1	t−1

i �i=1
2n , each in aug-

mented state space of dimension n, given as �x̂t−1	t−1
+v j , x̂t−1	t−1−v j� j=1

n . The vectors �v j� j=1
n are the columns of A

where A can be any matrix satisfying AAT=nPt−1	t−1
xx . Here,

we calculate A using the Cholesky decomposition of Pt−1	t−1
xx .

The sigma points are propagated through the dynamical
equation and the observation function is applied

xt	t−1
i = fa�xt−1	t−1

i � , �9�

yt	t−1
i = zt	t−1

i . �10�

The means of the transformed sigma points are

x̂t	t−1 =
1

2n


i=1

2n

xt	t−1
i , �11�

ŷt	t−1 =
1

2n


i=1

2n

yt	t−1
i . �12�

The covariances are

Pt	t−1
xx =

1

2n


i=1

2n

�xt	t−1
i − x̂t	t−1��xt	t−1

i − x̂t	t−1�T + Qa, �13�

Pt	t−1
xy =

1

2n


i=1

2n

�xt	t−1
i − x̂t	t−1��yt	t−1

i − ŷt	t−1� + qa, �14�

Pt	t−1
yy =

1

2n


i=1

2n

�yt	t−1
i − ŷt	t−1�2 + Q11

a + R , �15�

with qa= �Q11
a ,0 ,0 ,0 ,0�T. The augmented covariance matrix

of the dynamical noise Qa is zero except for the element Q11
a

related to the state variable z which is given by Q11
a =Q

=h�2. When reaching a new data point yt, the estimates of
the state and the parameters as well as their uncertainties are
corrected using the new observation according to the ordi-
nary Kalman update equations

x̂t	t = x̂t	t−1 + Kt�yt − ŷt	t−1� , �16�

Pt	t
xx = Pt	t−1

xx − KtPt	t−1
yy Kt

T, �17�

where Kt is the Kalman gain matrix given as

Kt = Pt	t−1
xy �Pt	t−1

yy �−1. �18�
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Since the dynamical model is specified here as a continuous-
time equation rather than a discrete system, the step size h
usually has to be taken much smaller than the sampling in-
terval of the data �t. Hence, one has to propagate sigma
points many times before reaching the next data point and
updating according to Eqs. �16�–�18�.

Note that the algorithm is deterministic even for a sto-
chastic model. It propagates only probability densities and
does not refer to individual noise realizations; for a particular
observational time series �yt�t=0

N and given initial guesses for
the state and the parameters x̂0	0 as well as their uncertainties
P0	0

xx , the outcome is determined.
Along with the estimates for the state and the parameters,

the algorithm provides information on their uncertainties.
Assuming Gaussian estimation errors, a symmetric 95%-
confidence interval for a particular element of the augmented
state vector xi is given as �x̂i−1.96�Pii

xx , x̂i+1.96�Pii
xx�.

For vanishing observational noise �R=0�, the state esti-
mate degenerates to ẑt	t=yt, but parameter estimation is then
still useful. For technical reasons, even with no observational
noise, R is not set exactly to zero but to a very small number,
say, R=10−12. This prevents the matrix Pt	t

xx from becoming
negative definite due to rounding errors when the algorithm
proceeds which would cause the Cholesky decomposition to
break down.

B. Estimation of the noise level

Besides the parameters �ai�i=1
4 , one wishes to estimate the

noise level � directly from the data since it is as essential in
determining the dynamical behavior of the system as the
shape of the potential. Unfortunately, the noise levels �both
the dynamical and the observational� cannot be systemati-
cally estimated within the UKF; it has to be given before-
hand based on prior knowledge about the system and the
observation process. This is a fundamental weakness of all
types of Kalman filters. We propose an ad hoc solution to the
problem that proves adequate at least for the specific model
setting considered here. Assuming the observational noise
level to be known, the dynamical noise level is determined
by fitting some global statistical quantity that characterizes
the long-term dynamics of the system. Stochastically driven
motion in a bistable potential is characterized by a stationary
probability density that is peaked around the minima of the
potential. The sharpness of the probability density depends
crucially on the noise level. Therefore, it appears reasonable
that for an adequate model, the stationary probability density
pm�z�, or in the case of observational noise the observed
probability density pm

o �y�, should match the empirical density
of the data. For this purpose, we run the UKF for different
noise levels and monitor the deviation between the observed
cumulative distribution function of the model �m

o and that of
the data �d defined as the Kolmogorov-Smirnov distance

D = max
y

	�m
o �y� − �d�y�	 �19�

as a function of the noise level and search for a minimum.
For the model considered here, it is known that

pm�z� � exp�− 2U�z�/�2� , �20�

with a proper normalization constant �21�. The normalization
and the cumulative distribution can be obtained by numerical
integration. In the case of observational noise, the probability
density of the observed variable y is given by the convolu-
tion integral

pm
o �y� � 

−�

+�

pm�z�exp�−
�y − z�2

2R
�dz , �21�

which is solved and the normalization and cumulative distri-
bution are found numerically. The distribution function of
the data is given empirically as �d�y�=Ny / �N+1�, where Ny
is the number of data points less or equal y and N+1 is the
size of the whole data set.

In general, for dynamical systems that are not so much
characterized by the shape of their stationary density, other
criteria rather than the measure D may be more appropriate
to determine the noise level. Possible alternatives are
moment-matching conditions �e.g., tuning the mean or the
variance of some important quantity in the system� as well as
fitting a characteristic time scale of the system given by the
autocorrelation function at some meaningful lag, the decor-
relation time, or a regime transition time.

VI. DEMONSTRATION OF THE METHOD ON
SIMULATED DATA

In order to assess and demonstrate the ability of the UKF
to reliably identify parameters and noise strengths in the
model setting considered here, we first apply it to simulated
data. We assume a symmetric double-well potential given by
U�z�=z4−2z2, that is, �a1 ,a2 ,a3 ,a4�= �0,−2,0 ,1�; the noise
level is �=1.5. The system is simulated for 1000 time units
using the Euler scheme with a step size of 10−5. The sam-
pling interval is �t=0.05; 20001 data points are recorded
�N=20000�. Figure 3 shows a sample trajectory of the sys-
tem consisting of 1001 data points spanning a time period of
50 system time units. The time series is contaminated with
observational noise of standard deviation 0.1. The Kramers
mean waiting time for a transition from one stable state to
the other �21� is about 2.7 which when interpreted as ky is
about the same as in the ice-core data �11�. The symmetry of
the potential is not fixed when applying the UKF algorithm;
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FIG. 3. Sample trajectory of stochastically driven motion in a
symmetric double-well potential with observational noise.
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all four parameters �ai�i=1
4 are treated as unknown and are to

be estimated. The UKF is initialized with �a1 ,a2 ,a3 ,a4�
= �2,2 ,2 ,2� which is quite far away from the true solution.
The initial-state estimate is given by the initial observation:
ẑ0	0=y0. The initial uncertainties are set to 1 for all four pa-
rameters; the initial-state uncertainty is 0.01 in accordance
with the observational noise level. The step size in the UKF
is h=�t /100=0.0005; we set R=0.01.

The UKF is run for different noise levels and the actual
noise level is determined as described above. By matching
the distribution functions of the model and the data sample,
the noise level is correctly identified as �=1.5 �Fig. 4�a��.
Without observational noise, the minimum of D at 1.5 is
even sharper �not shown�. Figures 4�b� and 4�c� give the
estimated parameter values together with 95%-confidence
intervals as the algorithm proceeds through the time series.
The final values after 1000 time units �20001 data points� are
a4=1.01�0.06, a3=0.03�0.06, a2=−2.01�0.15, and a1
=−0.05�0.17. Virtually the same parameter values with
slightly larger uncertainities are already obtained after 500
time units �10001 data points�. The estimates are very accu-
rate; for all parameters, the true values lie well within the
confidence intervals. The reconstructed potential is ex-
tremely close to the true one �Fig. 4�d��. We conclude that
the UKF together with the heuristic estimation of the noise
level is capable of accurately estimating parameters for
Brownian motion in a potential landscape even if the time
series is corrupted by observational noise.

VII. RESULTS FOR THE ICE-CORE DATA
AND DISCUSSION

The ice-core record was processed in the same way as the
simulated data. The initial guess for the potential was taken
to be U�z�=z4−2z2, that is, �a1 ,a2 ,a3 ,a4�= �0,−2,0 ,1� with
unit uncertainties. The initial estimate of the state z was
taken as the first data point. The measurement error of the
ice-core data is indicated to be as small as 0.07% �19�. This
suggests a value of about R=0.001 for the variance of the
observational error. Actually, when setting R=10−12, the re-
sults are virtually indistinguishable from those obtained with
R=0.001. Observational noise is negligible for the present
ice-core data compared to the dynamical noise that is of or-
der unity. We therefore adopt the value R=10−12 and the
dynamical variable z can be identified with the observed
variable y. The step size in the UKF algorithm was set to h
=�t /100=0.0005 ky. The data set spanning a period of 50
ky with 1001 observations turned out to be too short to ob-
tain well-converged estimates for the parameters with small
confidence intervals. Therefore, the data were processed 10
times in order to improve the estimates. Each new sweep was
started with the final estimates for the parameters and uncer-
tainties from the preceding sweep; however, the off-diagonal
elements of Pxx were set to zero �17�.

For the ice-core data, the parameter estimation turns out
to be ill-conditioned with respect to the parameter a1. The
estimate for a1 is still drifting and has large uncertainty after
processing the data 10 times. This is due to the almost de-
generate shape of the potential and the high dynamical noise

level �see below�. It does not occur with the simulated data
above as the potential there has a distinct shape with two
deep wells and the noise level is smaller. The problem is
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tions of the model and the data as a function of the noise level. �b�
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removed by imposing a moment-matching condition as a
constraint on the parameters. It appears reasonable to require
that the model has the same mean state as the ice-core data,
that is, �z�=�−�

+�zpm�z�dz=0, leading to the condition


−�

+�

z exp�− 2U�z�/�2�dz = 0. �22�

It is straightforward to verify that for fixed parameters a4, a3,
and a2 and noise level �, the mean state �z� tends to +� as a1
goes to −�, tends to −� as a1 goes to +�, and has a mono-
tonic dependence on a1 in between. Thus Eq. �22� uniquely
determines a1 for given a4, a3, a2, and �. The integral in Eq.
�22� is evaluated numerically; the root is then found by run-
ning 15 iterations of the bisection algorithm starting with the
�conservative� interval �−10,10� for a1. The UKF is modified

in that only a4, a3, and a2 are parameters to be determined.
We then have np=3 and n=4. a1 is treated as a constant in
the UKF and updated according to Eq. �22� at each data
point after the Kalman update using the current estimates for
a4, a3, and a2. Equation �22� is still valid in the case of
observational noise with mean zero as such a noise does not
alter the mean state of the system ��y�= �z��.

The UKF was run for different levels of dynamical noise
and the model probability distribution function monitored
and compared to that of the data. Here, the measure D turns
out to be inconclusive �Fig. 5�a��. There is a minimum at 3.2
but the values of D on the whole interval between 3.2 and
4.2 are quite similar given that the probability distribution of
the data is estimated from only 1001 data points. Therefore
the estimate for the noise level is backed up by looking at
other quantities. Figure 5�b� displays the standard deviation
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line indicates the standard deviation of the data. �c� Autocorrelation at lag �t in the model as a function of the noise level �solid�. Dotted
horizontal line indicated the autocorrelation at lag �t in the data. �d� Estimates for a4 �solid� and a3 �dotted� together with 95%-confidence
intervals as a function of time. �e� Estimates for a2 together with 95%-confidence intervals �solid� and a1 �dotted� as a function of time. �f�
Potential derived from the data �solid� together with probability densities of the model �dashed� and the data �dotted�.
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of z in the model as a function of the noise level. It increases
almost linearly over the interval between 2.2 and 5.1 and
there is a sharp match with the data at �=3.8. In Fig. 5�c�,
the autocorrelation function at lag 1, that is, at �t=0.05 ky
as a function of the noise level is given. The estimates are
calculated from an integration of the model for 5000 ky
�100 000 data points�; some sampling fluctuations are still
visible. The autocorrelation decreases more or less linearly
with the noise level; the autocorrelation of the data is
matched at �=3.7. Taking both standard deviation and auto-
correlation into account, we adopt �=3.75 as the dynamical
noise level of the potential model. In Figs. 5�d� and 5�e�, the
estimates of the parameters are displayed as a function of
time together with 95%-confidence intervals. There are inho-
mogeneities after about 10 ky of each sweep corresponding
to the visible inhomogeneity in the ice-core record at about
60 ky before present �Fig. 1�. After ten sweeps, well-
converged estimates for all parameters with reasonably small
confidence intervals are obtained. Taking averages over the
last sweep of 50 ky, the values of the parameters are a4
=0.16�0.01, a3=−0.37�0.03, a2=−0.79�0.12, and a1
=2.34. The potential is highly asymmetric and almost degen-
erate �that is, close to a bifurcation�; there is a deep well
corresponding to a cold stadial state and a very shallow well
corresponding to a warm interstadial state �Fig. 5�f��. The
finding that the system is right at the bifurcation to multiple
equilibria might help understand the large and abrupt
millennial-scale climate fluctuations during the last glacial,
associated with the DO oscillations and Heinrich/DO tan-
dems �22�. The stationary probability density of the model
and the probability density of the ice-core data are plotted
together with the potential �Fig. 4�f��. The probability density
of the data is calculated using a standard Gaussian kernel
estimator. Both probability densities are normalized to 25 in
order to increase the readability of the plot. The model cap-
tures the two maxima in the probability density correspond-
ing to the stadial and interstadial states with approximately
the correct population; there is a slight shift in the amplitudes
of the states themselves on the z axis. The mean and standard
deviation of z in the model are 	=0 and s=1.83 compared to
	=0 and s=1.84 in the ice-core data.

In Fig. 6, the autocorrelation function of the potential
model is contrasted with the sample autocorrelation function

of the ice-core data. Moreover, the autocorrelation functions
of an AR�1� model and an AR�3� model �the linear model
with the same number of parameters as the nonlinear model�
are given for comparison. The potential model captures the
initial decay of the autocorrelation very well but then decays
too fast at larger lags. However, the memory at larger lags in
the autocorrelation function of the ice-core data turns out to
be more an artifact due to the nonstationarity of the data
rather than genuine long-term memory due to a deterministic
dynamical mechanism. This is revealed by looking at auto-
correlation functions over parts of the time series where the
data are more stationary �not shown�. The memory at larger
lags is then greatly reduced and the autocorrelation function
is much closer to that of the potential model. The model is
stationary by construction and can only model the stationary
part of the autocorrelations. The nonlinear potential model
outperforms the AR�1� model, albeit not dramatically, and its
autocorrelation function is virtually indistinguishable from
that of the AR�3� model. The nonlinear potential model cap-
tures the linear properties of the data as well as the linear
model of the same complexity. On top of this, it models
some nonlinear features such as the strongly non-Gaussian
probability density whereas the probability density of an AR
model is always Gaussian.

In Fig. 7, a sample trajectory of the model derived from
the ice-core data is displayed. The stochastic equation was
integrated using the Euler scheme with step size 10−5 and
sampled with �t=0.05. The ice-core time series is shown
again, here with its mean value removed, to facilitate com-
parison. The trajectory bears clear similarity with the ice-
core record; transitions from the cold stadial state to the
warm interstadial state and back are reproduced on the cor-
rect time scale. However, the model is not able to capture the
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FIG. 6. Sample autocorrelation function of the ice-core data
�solid� and autocorrelation functions of the nonlinear potential
model �dashed�, an AR�1� model �dot-dashed�, and an AR�3� model
�dotted�.

-4

-2

0

2

4

6

203040506070

δ18
O

an
om

al
y

[p
er

m
ill

e]

time [ky before present]

(b)

(a)

-4

-2

0

2

4

6

0 10 20 30 40 50

z

time [ky]
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glacial period with the mean value removed. �b� Sample trajectory
of the model derived from the ice-core data.
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pronounced temporal asymmetry of DO events. DO events
are systematically characterized by an abrupt warming fol-
lowed by a slow cooling which is not the case in the model.

The ansatz of Eq. �2� can be generalized to U�z�
=
i=1

L aiz
i, with L being an even integer. For the data set

considered here, it was found that using a sixth-order poly-
nomial instead of a fourth-order polynomial only provides a
slightly better capture of the stationary density but does not
visibly improve the dynamical behavior of the model. A
higher-order potential is useful if the data display more than
two distinctly different states.

VIII. ALTERNATIVE METHOD

Given that observational error is negligible in the present
ice-core data, the one-to-one correspondence of the station-
ary density to the potential �Eq. �20�� suggests deriving the
potential directly from the probability density of the data �cf.,
�10,24��. Equation �20� yields

U = −
�2

2
log pd, �23�

where pd is the probability density of the data. A least-
squares fit of the ansatz of Eq. �2� to −log pd provides the
shape of the potential that is independent of the noise level
up to a constant factor. The stationary density of the corre-
sponding model and all its moments are independent of the
noise level. The time scale of the system remains undeter-
mined, suggesting a fit to the autocorrelation of the data to
obtain the noise level. Actually, a weighted least-squares pro-
cedure was used, weighting each data point with the prob-
ability density of the data at that point. This guarantees the
closest fit in regions where the data are. A standard least-
squares algorithm overweights the outside regions of the po-
tential at the expense of the inner region around zero that is
indeed most interesting. The noise level is determined by
fitting the autocorrelation at lag �t to that of the data. Again,
the autocorrelation decreases monotonically with increasing
noise level �not shown�. A match is obtained for �=3.75, just
the same value adopted before. The potential for that noise
level is shown in Fig. 8 together with the probability density
of the corresponding model and the data, allowing a direct

comparison to the UKF result �Fig. 5�f��. The coefficients of
the potential are a4=0.15, a3=−0.44, a2=−0.65, and a1
=2.89. The two potentials are fairly similar. The
Kolmogorov-Smirnov distance between the probability dis-
tributions of the model and the data is here D=0.034, some-
what smaller than for the UKF model. The mean and stan-
dard deviation of z in the model are 	=0 and s=1.87, a
slight overestimation of the variance of the system. The au-
tocorrelation function is very close to that for the UKF
model �not shown�, the UKF model being slightly closer to
the autocorrelation of the data. It was found that using a
sixth-order polynomial for the potential instead of a fourth-
order one does not provide a significant improvement of the
model performance in any of the quantities mentioned above.

In the present model setting, the simple least-squares fit-
ting method already yields similar results to the more elabo-
rated UKF method. The system is already very much char-
acterized by its stationary density alone. It should be noted,
however, that the least-squares fit to the probability density is
very limited whereas the UKF approach is much more gen-
eral. Already with observational noise, the least-squares fit is
no longer possible �cf., �23��. Moreover, most dynamical sys-
tems do not have a straight correspondence between the
equation of motion and the stationary density such as Eq.
�20� at all. They are not uniquely identifiable from only the
stationary density.

IX. CONCLUSIONS AND OUTLOOK

We have presented and verified a methodology for deriv-
ing dynamical models from paleoclimatic time series. As an
example, we have obtained a stochastically driven nonlinear
potential model from NGRIP ice-core data. It is able to cap-
ture some basic statistical properties of the data. Admittedly,
the model does not provide a physical mechanism and thus
conclusions about the underlying dynamics are somewhat
limited. Our analysis reveals that the system switches ran-
domly between two different states and that the climate state
may linger for a longer time around the locally extreme
points of the potential. On the other hand, the abstract char-
acter of our model might be regarded as an advantage in that
it is based purely on data. The question of the underlying
dynamics is related to the stability of the stadial and inter-
stadial states. The present method may be used to perform a
bifurcation analysis of a paleoclimatic time series by tracing
changes in the shape of the potential, the number of states,
and their stability over time �cf., �24��.

The model derived here could be used as a null hypothesis
for DO-like oscillations against which other models should
be tested. This constitutes a stronger test than the common
null hypotheses of white or red noise �25�.

A possible extension of the present work lies in adding a
deterministic periodic forcing to Eq. �1�, that is, a periodic
variation of the parameter a1 in the potential in order to
investigate the importance of stochastic resonance �cf., �11��.
Another interesting point would be the inclusion of multipli-
cative �that is, state-dependent� noise and its influence on the
performance of the model. There has indeed been evidence
that the statistical properties of the data are different in the
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FIG. 8. Potential derived by least-squares fit from the probabil-
ity density of the ice-core data �solid� together with probability
densities of the model �dashed� and the data �dotted�.
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stadial and the interstadial states �25,26�. Other extensions
refer to colored or heavy-tailed noises.

The methodology employed in the present paper is fairly
general and applicable to a variety of different deterministic
and stochastic low-order models. It has also been used to
derive a nonlinear stochastically driven oscillator model
from the ice-core data �23�. It could serve as a tool to com-
pare the different conceptual models that have been proposed
to explain the dynamics of DO events and to clarify to what
extent they are quantitatively in accordance with paleocli-
matic data records.
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